IT, AI

2024년 09월 08일 일일 요약

notes262 2024. 9. 8. 20:55



=============================================

1: 본 글은 웹 개발을 위한 유용한 VS Code 확장 프로그램과 효율적인 코딩 팁을 소개하고, JavaScript의 다양한 기능에 대한 논의를 포함하고 있습니다. ES12의 주요 기능, Promise 처리 방식의 차이점, Firebase를 활용한 웹 소켓 호스팅과 같은 주제를 다루어, 코딩 생산성과 효율성을 높이는 방법에 대해 설명하고 있습니다.

키워드: VS Code, JavaScript, ES12, Promise, Firebase

출처: https://medium.com/@tariibaba?source=email-5cbf792c976b-1725729122386-digest.reader-266711b938df-cf2e75815c84----4-99------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

Tari Ibaba – Medium

Read writing from Tari Ibaba on Medium. Software developer, writer, and entrepreneur. Every day, Tari Ibaba and thousands of other voices read, write, and share important stories on Medium.

medium.com



=============================================

2: Konstantin Ostrovsky님은 gRPC를 5년 동안 사용해본 경험을 공유하셨습니다. gRPC는 현대의 마이크로서비스 통신에 유용하며, OpenTelemetry를 이용한 효율적인 디버깅 및 로깅 방법도 설명하셨습니다. 또한 Google Cloud Logging에서 BigQuery로 로그를 내보내는 방법과 CloudSQL PostgreSQL 데이터베이스의 무중단 마이그레이션 방법에 대해서도 언급하셨습니다. 전반적으로 gRPC와 클라우드 기반 기술이 중요한 주제로 다루어졌습니다.

키워드: gRPC, OpenTelemetry, CloudSQL, BigQuery, 마이크로서비스

출처: https://medium.com/@kostyay?source=email-5cbf792c976b-1725729122386-digest.reader--b181a3b2b73b----5-98------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

Konstantin Ostrovsky – Medium

Read writing from Konstantin Ostrovsky on Medium. I used to write kernel drivers in C. Now I write Backend in Go :) #gRPC #GoLang #OpenTelemetry. Every day, Konstantin Ostrovsky and thousands of other voices read, write, and share important stories on Medi

kostyay.com



=============================================

3: 최근의 `Skeleton Recall Loss`는 세분화(Segmentation)에서의 중요한 기술적 발전으로, 특히 미세 구조의 세분화에 효과적입니다. 세분화는 자율주행차, 의료 이미지 인식, 위성 이미지 모니터링 등 다양한 분야에서 필요하며, 수학적 기법과 딥러닝 네트워크인 U-Net과 같은 구조들이 정확도를 높이는 데 기여하였습니다.

키워드: Skeleton Recall Loss, 세분화, U-Net

출처: https://medium.com/@bamania-ashish/skeleton-recall-loss-is-the-new-breakthrough-in-segmentation-b1ce43c093f4?source=email-5cbf792c976b-1725729122386-digest.reader-5517fd7b58a6-b1ce43c093f4----12-99------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

‘Skeleton Recall Loss’ Is The New Breakthrough In Segmentation

A deep dive into how Segmentation works and how the new Skeleton Recall Loss sets itself as the new state-of-the-art in this process

levelup.gitconnected.com



=============================================

4: 본 글에서는 최신 딥러닝 기술의 발전과 그 응용 분야에 대해 논의하고 있습니다. 특히 인공지능의 학습 알고리즘과 심층 신경망의 구조에 대해 상세히 설명하며, 다양한 데이터셋을 활용한 실험 결과도 포함하고 있습니다. 또한, 파이썬과 자바스크립트를 활용한 프로그래밍 사례를 통해 딥러닝 모델 구현 방법을 제시하고 있습니다.

키워드: 딥러닝, 인공지능, 신경망, 파이썬, 자바스크립트, 알고리즘

출처: https://medium.com/me/missioncontrol?source=email-5cbf792c976b-1725729122386-digest.reader-------------------------61408350_10c2_449a_ad26_240b3e61ec48

 

Medium

 

medium.com



=============================================

5: 해당 블로그 글에서는 Netflix의 다양한 기술적 접근 방식과 실험적 방법론에 대해 다루고 있습니다. 특히 장기 회원 만족도를 위한 추천 시스템, 과거 실험에서 더 나은 프록시 메트릭스를 학습하는 방법, 그리고 Netflix의 워크플로우 오케스트레이터인 Maestro에 대한 설명이 포함되어 있습니다. 다양한 데이터 엔지니어링 기술과 머신 러닝 모델이 언급되며, 비디오 클라식파이어 및 인과 추론 응용 프로그램에 대한 논의도 포함되어 있습니다.

키워드: 추천 시스템, 프록시 메트릭스, 워크플로우 오케스트레이터, 데이터 엔지니어링, 비디오 분류기

출처: https://medium.com/@netflixtechblog?source=email-5cbf792c976b-1725729122386-digest.reader-2615bd06b42e-da6805341642----14-102------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

Netflix Technology Blog – Medium

Read writing from Netflix Technology Blog on Medium. Learn more about how Netflix designs, builds, and operates our systems and engineering organizations.

netflixtechblog.medium.com



=============================================

6: 에어비앤비의 기술 블로그에서는 데이터 분류, 안정적인 클라우드 인프라, 그리고 웹 성능 향상과 같은 다양한 주제를 다루고 있습니다. 최신 React 기능을 누릴 수 있도록 프론트엔드 인프라를 점진적으로 현대화하며, 머신러닝 기능 플랫폼인 Chronon을 오픈 소스로 제공하여 관찰 가능성과 데이터 관리 도구를 통합하고 있습니다. 이러한 내용을 통해 에어비앤비는 보안, 개인 정보 보호 및 규정 준수의 기초를 다지고 있습니다.

키워드: 데이터 분류, 머신러닝, 클라우드 인프라, React, 오픈 소스

출처: https://medium.com/airbnb-engineering?source=email-5cbf792c976b-1725729122386-digest.reader-53c7c27702d5-84425d66ee11----13-98------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

The Airbnb Tech Blog – Medium

Creative engineers and data scientists building a world where you can belong anywhere. http://airbnb.io.

medium.com



=============================================

7: Tari Ibaba님은 JavaScript의 특성과 기능에 대한 다양한 주제를 다뤄주고 있습니다. 특히 배열과 관련된 불일치 문제, Promise의 동작 방식, VS Code의 활용 팁 및 Node.js의 TypeScript 지원 등 다양한 기술적 내용을 소개하고 있습니다.

키워드: JavaScript, Promise, VS Code, Node.js, TypeScript

출처: https://medium.com/coding-beauty?source=email-5cbf792c976b-1725729122386-digest.reader-266711b938df-cf2e75815c84----4-99------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

Coding Beauty – Medium

High quality educational resources for web developers.

medium.com



=============================================

8: 본문에서는 다양한 IT 및 AI 관련 주제를 다루고 있으며, Llama-Agents와 같은 최신 프레임워크, PHP Fibers를 이용한 게임 개발, Retrieval-Augmented Generation(RAG), 프로그래밍 언어와 알고리즘에 대한 개선 방법 등을 소개하고 있습니다. 여러 전문가들이 작성한 기사를 통해 최신 기술 동향과 프로그래밍 팁을 제공하고 있습니다.

키워드: Llama-Agents, PHP Fibers, Retrieval-Augmented Generation, AI, 알고리즘

출처: https://medium.com/gitconnected?source=email-5cbf792c976b-1725729122386-digest.reader-5517fd7b58a6-b1ce43c093f4----12-99------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

Level Up Coding

Coding tutorials and news. The developer homepage gitconnected.com && skilled.dev && levelup.dev.

levelup.gitconnected.com



=============================================

9: 본 글에서는 Airbnb의 Apache Flink 플랫폼이 Hadoop Yarn에서 Kubernetes 기반 아키텍처로의 진화를 다루고 있습니다. Flink는 처음에 Spark Streaming과 함께 사용되었고, 이후 주역으로 자리잡게 되었습니다. 아키텍처의 발전은 세 가지 단계로 나뉘며, 각 단계에서 발생한 문제점과 해결 과정을 설명합니다. 현재 Kubernetes에서의 Flink 운용은 개발자 경험 개선, 자원 및 의존성 격리 강화, 보다 나은 모니터링, 서비스 검색의 표준화 등 다양한 장점을 제공합니다. 앞으로도 Flink의 자동 스케일링, 작업 가용성 개선 등을 위한 작업이 예정되어 있습니다.

키워드: Apache Flink, Kubernetes, Hadoop Yarn, 스트림 처리, 마이크로서비스, CI/CD

출처: https://medium.com/@zhangran608/apache-flink-on-kubernetes-84425d66ee11?source=email-5cbf792c976b-1725729122386-digest.reader-53c7c27702d5-84425d66ee11----13-98------------------61408350_10c2_449a_ad26_240b3e61ec48-1

 

Apache Flink® on Kubernetes

Airbnb’s Use of A New Flink platform evolved from Apache Hadoop® Yarn

medium.com



=============================================

10: gRPC를 선택한 Torq의 경험을 살펴보면, gRPC는 마이크로서비스 간의 통신을 원활하게 하고 코드 생성, 모듈 의존성 관리, 백워드 호환성을 강화하는 데 큰 도움이 됩니다. buf.build 팀의 개선 덕분에 gRPC와 Protocol Buffers의 사용 경험이 많이 향상되었습니다. 또한, gRPC-web 사용 시의 도전과제를 언급하며, connectrpc와 linkerd를 통해 이를 해결하는 방안을 제시했습니다. 결과적으로 gRPC는 여전히 강력한 선택지로 평가되고 있으며, 개발 속도와 시스템 신뢰성을 높이는 데 기여합니다.

키워드: gRPC, Protocol Buffers, buf.build, module dependency management, gRPC-web, connectrpc, linkerd

출처: https://medium.com/@kostyay/grpc-5-years-later-is-it-still-worth-it-b181a3b2b73b?source=email-5cbf792c976b-1725729122386-digest.reader--b181a3b2b73b----5-98------------------61408350_10c2_449a_ad26_240b3e61ec48-1